Y=2-5t^2

Simple and best practice solution for Y=2-5t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=2-5t^2 equation:



=2-5Y^2
We move all terms to the left:
-(2-5Y^2)=0
We get rid of parentheses
5Y^2-2=0
a = 5; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·5·(-2)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*5}=\frac{0-2\sqrt{10}}{10} =-\frac{2\sqrt{10}}{10} =-\frac{\sqrt{10}}{5} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*5}=\frac{0+2\sqrt{10}}{10} =\frac{2\sqrt{10}}{10} =\frac{\sqrt{10}}{5} $

See similar equations:

| x2+2x=2=0 | | 12b–8=1+15b | | F=5/4(n-85) | | 23−14+x=4 | | 23/2=w | | B=7/6(j-63) | | -25−14x=25 | | 5x+12+3x+128=180 | | 2(x-4)=7=3 | | -17y-16y-7=18 | | 2x+23+2x+141=180 | | -7+6x=×+8 | | 2f-34+5=1 | | 6x+44-10x+65=117 | | 2(f–17)+5=1 | | -16=3(u+10)+-10 | | -5x+5+3x=-24x-18 | | (5x-1)^2+6=0 | | 2/3+2r=-15 | | -7v=16–5v | | 3t÷10=1/2 | | 2x^2=x^2+12 | | 45.47=(x/1.15)+(x/(1.15^2)) | | 3j–2j=6 | | 18=-2(m+-16) | | -20b+4b+-19=13 | | -19d+11d=-16 | | x^2=3150 | | 4/7y-2=3/7y+13/14 | | 4/7-2=3/7y+3/14 | | 2/3x=15+1/4x | | X^2+4x-145=0 |

Equations solver categories